List 2

Tangent lines, monotonicity, critical points

49. Give the slope of the tangent line to $y=3 x+\frac{7}{x}$ at $x=2$. If $f(x)=3 x+\frac{7}{x}$, then $f^{\prime}(x)=3-\frac{7}{x^{2}}$ and $f^{\prime}(2)=3-\frac{7}{4}=\frac{5}{4}$.
50. Give an equation for the tangent line to $y=3 x+\frac{7}{x}$ at $x=2$.

Slope $\frac{5}{4}$. Since $f(2)=6+\frac{7}{2}=\frac{19}{2}$, the point $\left(2, \frac{19}{2}\right)$ is on this line. An equation for the line through $\left(2, \frac{19}{2}\right)$ with slope $\frac{5}{4}$ is $y=\frac{19}{2}+\frac{5}{4}(x-2)$, or $y=\frac{5}{4} x+7$.
51. Give an equation for the tangent line to $y=\sin (x)$ at $x=\frac{\pi}{3} . y=\frac{\sqrt{3}}{2}+\frac{1}{2}\left(x-\frac{\pi}{3}\right)$

W52. Find a number k so that the tangent line to $y=x^{2}+4 x$ at $x=k$ and the tangent line to $y=\frac{1}{5} x^{5}-8 x+1$ at $x=k$ are parallel. $k=2$
53. Use the fact that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\sin \left(\frac{1}{x}\right)\right]=\frac{-\cos \left(\frac{1}{x}\right)}{x^{2}}
$$

to find an equation for the tangent line to $y=\sin \left(\frac{1}{x}\right)$ at $x=\frac{1}{\pi} \cdot y=\pi^{2} x-\pi$
54. (a) For what value(s) of x does $x^{3}-18 x^{2}=0$? $x=0, x=18$
(b) For what value(s) of x does $3 x^{2}-36 x=0$? $x=0, x=12$
(c) For what value(s) of x does $6 x-36=0$? $x=6$
55. At what values of x is the tangent line to $y=x^{3}-18 x^{2}$ horizontal?

This is the same as Task 54(b). $x=0, x=12$
A number c in the domain of $f(x)$ is a critical point of $f(x)$ if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
If $f^{\prime}(a)>0$ then f is increasing at $x=a$.
If $f^{\prime}(a)<0$ then f is decreasing at $x=a$.
56. What are the critical points of $x^{3}-18 x^{2} ? x=0, x=12$
57. Find all the critical points of $8 x^{5}-57 x^{4}-24 x^{3}+9.0,6, \frac{-3}{10}$
58. List all the critical points of the function graphed below (portions of its tangent lines at $x=-2, x=1, x=3$, and $x=6$ are shown as dashed lines).

Critical points are $-2,1,3,5$ (but not $x=6$).
59. Is the function

$$
f(x)=x^{8}-6 x^{3}+29 x-12
$$

increasing, decreasing, or neither when $x=-1$? increasing
60. (a) On what (possibly infinite) interval or intervals is $2 x^{3}-3 x^{2}-12 x$ increasing? $x<-1$ or $x>2$, which is $(-\infty,-1) \cup(2, \infty)$ in interval notation.
(b) On what (possibly infinite) interval or intervals is $2 x^{3}-3 x^{2}-12 x$ decreasing? $-1<x<2$, which is $(-1,2)$ in interval notation.
61. Suppose $f(x)$ is a function that is increasing when $x=5$.
(a) Is it possible to know the sign of $f(5)$? (That is, it is possible to know which of $f(5)>0$ or $f(5)=0$ or $f(5)<0$ is true?) No
(b) Is it possible to know the sign of $f^{\prime}(5)$? Yes: $f^{\prime}(5)>0$
(c) Is it possible to know the sign of $f^{\prime \prime}(5)$? No
62. On what interval(s) is $x^{2}-8 \sqrt{x}+7$ decreasing? $[0, \sqrt[4]{3})$
63. List all critical points of $f(x)=\frac{3}{4} x^{4}-7 x^{3}+15 x^{2}$ in the interval $[-3,3]$. $f^{\prime}(c)=0$ for $c=0,2,5$, but only 0 and 2 are in the interval $[-3,3]$.
64. For each graph below, is there a critical point at $x=0$?
(a)

(b)

(c)

(d)

(e)

(f)

65. The derivative of

$$
f(x)=\frac{4 x+1}{3 x^{2}-12} \quad \text { is } \quad f^{\prime}(x)=\frac{-4 x^{2}-2 x-16}{3 x^{4}-24 x^{2}+48} .
$$

Using this, find all the critical points of $f(x)$.
$-4 x^{2}-2 x-16=0$ has no real solutions, but $3 x^{4}-24 x^{2}+48=0$ when $x=2, x=-2$, so f^{\prime} does not exist at those points.
66. Find all the critical points of
(a) $f(x)=x^{2}-\cos (x) . f^{\prime}=2 x+\sin (x)=0$ means $\sin (x)=-2 x$, which is true only for $x=0$.
(b) $f(x)=2 x+\cos (x) . f^{\prime}=2-\sin (x)=0$ when $\sin (x)=2$, but this never happens for real values of x. So this function has no critical points.
(c) $f(x)=x+2 \cos (x) . f^{\prime}=1-2 \sin (x)=0$ means $\sin (x)=\frac{1}{2}$, which is true for $x=\frac{1}{6} \pi+2 k \pi$ and $x=\frac{5}{6} \pi+2 k \pi$, where k can be any integer.
(d) $f(x)=x^{2}+x-\sin (x) \cdot f^{\prime}=2 x+1-\cos (x)=0$ when the curves $y=\cos (x)$ and $y=2 x+1$ intersect. This happens only at $x=0$.
(e) $f(x)=x^{2}+x+\cos (x)$. $f^{\prime}=2 x+1-\sin (x)=0$ when the curves $y=\sin (x)$ and $y=2 x+1$ intersect. There is one point where this occurs, but there is no nice (technically, "closed form") formula for this value. It is approximately $x \approx-0.335418$.
67. Match the functions (a)-(f) to their derivatives (I)-(VI).
(a)

(I)

(b)

(II)

(c)

(III)

(d)

(IV)

(e)

(V)

(f)

(VI)

[^0]
[^0]: a-VI, b-II, c-I, d-V, e-III, f-IV

